

SCATSAT-1 Calibration and Data Quality

Alexander Fore, Bryan Stiles, Sermsak
Jaruwatanadilok, Ernesto Rodriguez

Jet Propulsion Laboratory, California Institute of
Technology

IOVWST 2018

Status of Non-Spinning QuikSCAT for SCATSAT Calibration

- QuikSCAT remains stable, with a possible drift estimated to be no larger than 0.03 dB / year.
- No sudden changes or jumps in calibration.
- QuikSCAT enables temporal tracking of SCATSAT calibration at the 0.03 dB/year level.
- We presume at (0.2, 0.3) calibration adjustment for possible drift of QuikSCAT for use in SCATSAT calibration.

g0 := sigma0/cos(inc angle)

QuikSCAT Amazon g0 [dB]; (ko) – Inner dec; (rx) – Outer dec

SCATSAT Temporal Stability

- 1.1.3 data is most recent operational version:
 - 1.1.3 data in 2017 is a beta version; while 1.1.3 in 2018 is operational.
 - We presume the calibration is the same, however, insufficient data to determine (yet).
- We don't see evidence of a calibration drift in 1.1.3; SCATSAT seems stable to at least 0.2 dB/year level.

QuikSCAT Cross-Calibration Methodology

- Amazon based method:
 - Select a region over Amazon with nearly all volume scattering (we use mask from D. Long).
 - Compute time series of QuikSCAT and SCATSAT, averaged over the region, averaged up to two week periods.
 - Compute difference of the two time series.
- Ocean based method:
 - Collocate both QuikSCAT and SCATSAT with ECMWF.
 - Compute bin-mean sigma0 and 2D PDF of each with respect to ECMWF wind speed and relative azimuth.
 - Use PDF from spinning QuikSCAT as weights for computing overall mean sigma0 from bin-mean sigma0s.
 - Compute one sigma0, using those PDF weights, for each instrument, for each two week period.
 - Compute difference of the two time series.

Overall Calibration

- Using QuikSCAT we determined calibration estimates from both Ocean and Amazon.
 - We correct for LOTD between QuikSCAT and SCATSAT using data derived from RapidSCAT.
 - They are not in agreement, neither were they for OSCAT, and to a lesser degree RapidScat.
- For SCATSAT, we use the ocean calibration adjusted by the (0.2, 0.3) dB QuikSCAT drift estimate.

SCATSAT	Ocean via QS	Amazon via QS	Difference	Used in proc.
HH adjustment	+0.31 dB	-0.15 dB	+0.46 dB	+0.51 dB
VV adjustment	-0.56 dB	-0.82 dB	+0.26 dB	-0.26 dB
RS (High SNR)	Ocean via QS	Amazon via QS	Difference	Used in proc.*
HH adjustment	+0.02 dB	+0.02 dB	0.00 dB	+0.00 dB
VV adjustment	+0.15 dB	-0.06 dB	-0.21 dB	+0.00 dB
OSCAT	Ocean via QS	Amazon via QS	Difference	Used in proc.
HH adjustment	+0.53 dB	+0.15 dB	+0.38 dB	+0.53 dB
VV adjustment	+0.30 dB	-0.06 dB	+0.36 dB	+0.30 dB

^{*}RS High SNR was a validation of the calibration; based on analysis we did not change calibration.

Slice Calibration using Amazon

- 1.1.3 SCATSAT L1B data
- Compare slice γ_0 to cell γ_0 as function of slice number and antenna azimuth.
- $\gamma_0 = \sigma_0 / \cos(inc_angle)$

Slice Calibration using Ocean

- 1.1.3 SCATSAT L1B data
- Double ratio:
 - Residual = (slice σ_0 / cell σ_0) * (cell_model σ_0 / slice model σ_0)
- Filter using IMERG HQ precip to remove rain

1.1.3 Calibration Improvements

- ISRO changed the source of calibration signal in 1.1.3.
- 1.1.2 has occasional large calibration error, which seems to have been fixed in 1.1.3.
 - Still needs to be evaluated.

SCATSAT-1 Performance vs ECMWF

- SCATSAT better than OSCAT
- SCATSAT meets QuikSCAT science requirements
 - < 20 deg RMS direction error
 - < 2 m/s RMS wind speed error

SCATSAT NRT Data

- At JPL we have been receiving the SCATSAT L1B data with sufficiently small latency for a NRT product.
 - We have implemented a test-bed NRT data processor.
 - Median latency of 90 minutes from sensing to L2B data availability at JPL.
- NRT data meets QuikSCAT type science requirements.
- Soon to be released!

95

SCATSAT-1 and ASCAT-A/B

- SCATSAT-1 is in a 20:45 LTAN orbit.
- ASCAT-A/B are both in 21:30 LTAN orbits with opposite phase in orbit plane. (50 minutes apart).
- SCATSAT-1 collocates extremely well with the two of them.
 - More than 60% of SCATSAT-1 have a matchup with either ASCAT-A /B
 - All within 50 minutes.
 - Have to use both ASCAT-A and B to get best collocations.
- Orbit period difference between SCATSAT-1 and ASCAT of two minutes
 - Makes matchup time offsets and swath locations non-stationary in time.
 - Cycling of matchup times and swath locations every 50 orbits or so (100 minutes / 2 minutes)

SCATSAT/ASCAT Performance vs ECMWF

Summary

- Using QuikSCAT we generate consistently calibrated record of Ku-band scatterometer sigma0 and winds.
- Analysis of most recent 1.1.3 SCATSAT indicates stability to at least the 0.2 dB/year level.
- SCATSAT provides quality ocean vector winds:
 - Significantly improved from OSCAT.
 - Nearly as good as QuikSCAT.
- SCATSAT data may be generated in near-real-time:
 - Sufficiently small latency for operational use (median 90 minutes).
 - Sufficient data quality (meets QuikSCAT science requirements).
- SCATSAT collocates extremely well with ASCAT:
 - Can use ASCAT-A/B to track calibration drifts in SCATSAT.
 - Can perform joint C/Ku retrievals of ocean vector winds
 - Improved and consistent rain impact flagging and correction algorithms may be developed for QuikSCAT / OSCAT / ASCAT using the joint data record to train.